CHE 242 Exam UNIT 8	
Name	

W1912 CHE Z42 UNIT EIGHT SHENLOCK

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

 Carboxylic acids boil at molecular weights. This 		temperatures tl	nan do alcohols, ketones, o	r aldehydes of similar
A) are more acidic.				
B) are hydrophobic.				
C) form stable hydrog	gen-bonded dimers.			
D) have a greater oxy	gen content.			
E) none of the above.				
2) Which of the following is	is the strongest acid?	•		
A) chloroacetic acid	B) trichloroa	acetic acid	C) dichloroacetic acid	D) acetic acid
3) Carboxylic acids can be	made from Grignar	ds by treating th	e Grignard reagents with:	
A) carbon dioxide				
B) aldehydes				
C) carbon monoxide				
D) esters				
E) diborane				
4) Esters and amides are n	nost easily made by 1	nucleophilic acy	l substitution reactions on	ı :
A) alcohols				
B) carboxylates				
C) acid chlorides				
D) acid anhydrides				
E) carboxylic acids				
5) The combination of a cagroup.	arbonyl group and a	hydroxyl group	on the same carbon atom	is called a
A) carbamate	B) carboxyl	C) urethar	ne D) carbonate	E) carboxylate
6) Which of the following	is the most reactive	carboxylic acid	derivative?	
A) anhydride	B) amide	C) ester	D) nitrile	E) acid chloride

7) N-Methylacetamide is	s an example of:			
A) a primary amide	•			
B) a secondary ami	de			
C) a tertiary amide				
D) an imine				
E) an N, N-disubst	ituted amide			
8) Lithium aluminum hy	dride reduces carbox	ylic acids, acid chloride	s, and esters to:	
A) secondary alcoho	ols.			
B) ketones.				
C) aldehydes.				
D) tertiary alcohols				
E) primary alcohols	s.			
9) Phthalic acid produce	s what acid derivative	upon heating?		
A) an acid chloride				
B) an ester				
C) an amide				
D) a carboxylate				
E) an anhydride				
10) Cyclic amides are call	ed:			
A) lactones.	B) imines.	C) aminals.	D) lactams.	E) animals.
11) Cyclic esters are called	d:			
A) lactams.	B) lacrimals.	C) lactones.	D) enamines.	E) imides.
12) While the carbonyl str the carbonyl stretching			nes, and carboxylic acids	s is about 1710 cm ⁻¹ ,
A) 2200 cm ⁻¹	B) 1700 cm ⁻¹	C) 1735 cm ⁻¹	D) 1660 cm ⁻¹	E) 1800 cm ⁻¹
13) Peptide bonds are:				
A) amide linkages.		•		
B) ester linkages.		•		
C) ether linkages.				
D) imido linkages.				
E) disulfide linkage	es.			
14) How many standard a	amino acids are there?			
A) 64	B) 4	C) 20	D) 12	E) 30

- 15) A protein bonded to a sugar residue would be classified as a:
 - A) glycoprotein.
 - B) lipoprotein.
 - C) metalloprotein.
 - D) nucleoprotein.
 - E) simple protein.
- 16) A protein bonded to a fat would be classified as a:
 - A) simple protein.
 - B) nucleoprotein.
 - C) glycoprotein.
 - D) metalloprotein.
 - E) lipoprotein.
- 17) The primary structure of a protein refers to:
 - A) the orientation of pleated sheets.
 - B) the orientation of peptide subunits within a complex protein.
 - C) the placement of the protein's active site.
 - D) the orientation of α -helices.
 - E) the sequence of its amino acids.
- 18) Which of the following terms best describes the compound below?

$$\begin{array}{c} & & & 0 \\ & & || \\ & & || \\ & & || \\ & & 0 \\ & & || \\ & & || \\ & & CH-O-C-(CH_2)_{16}CH_3 \\ & & | & 0 \\ & & || \\ & & || \\ & & CH_2-O-C-(CH_2)_{18}CH_3 \end{array}$$

- A) a saturated triglyceride
- B) a lecithin
- C) a prostaglandin
- D) a wax
- E) a terpene

19) Which of the following terms best describes the compound below?

- A) a cephalin
- B) a protein
- C) a steroid
- D) a sesquiterpene
- E) an essential oil

20) Which of the following terms best describes the compound below?

CH3(CH2)12CO2H

- A) a prostaglandin
- B) a triglyceride
- C) a fatty acid
- D) a wax
- E) a phosphatidic acid

21) Which of the following terms best describes the compound below?

CH3(CH2)7CH=CH(CH2)7CO2H

- A) a synthetic detergent
- B) an unsaturated fatty acid
- C) a triglyceride
- D) isoprene
- E) a micelle

22) Which of the following is an advantage of using an alkylbenzenesulfonate detergent over a common soap?

- A) The alkylbenzenesulfonate detergent has no hydrophobic region.
- B) The alkylbenzenesulfonate detergent is uncharged.
- C) Calcium, magnesium, and iron salts of sulfonic acids are soluble in water.
- D) Greases are not emulsified by soaps.
- E) Sulfonates are protonated at higher pH's than are carboxylates.

 Oleic acid is an example of bond and carbon atoms. 	fatty acid. A molecule of oleic acid contains a single carbon-carbon double
A) an unsaturated; 9	
B) a saturated; 18	
C) an unsaturated; 18	
D) a saturated; 9	\cdot
E) a saturated: 52	

2004 ORGANIC CHEMISTRY DATA SHEET ACS Examinations Institute

1	1	
1	H	
į	1.01	
	3	ŀ
	Li	l
	6.94	
	11	l
	Na-	ŀ
	22. 9	ŀ
	19	l
	K	ŀ
	39.1	ļ
	L	1

5-	-6	- 7 .	8	9
В	С	N	0	F
10.8	12.0	14.0	16.0	19.0
13	. 14 Si	15	16	17
A-l	Si	P	<u>.</u> S	Cl
26.9	28.0	30.9	32.0	35.5
				35
	•			Br
				79.9
				53
				I
				127

. CH ₃ -	= Me	= methyl
CH₃CH ₂ —	= Et	= ethyl
	= Pr	= propyl or <i>n</i> -propyl
\\ \{\right\}	= iPr	= isopropyl
~~~\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}\signt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\signt{\sqrt{\sqrt{\sq}}}}}}}}\signti\septioned{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\signti\septioned{\sint{\sintexian}}}}}}}}}\signti\septiinden}}}}}}}}}}}}}}}}}}}}}}}}	= Bu	= butyl or <i>n</i> -butyl
C ₆ H ₅ —	= Ph or φ	= phenyl
PhCH ₂ —	= Bn	= benzyl



DIBAH or DIBALH diisobutylaluminum hydride

PCC, pyridinium chlorochromate

LDA, lithium diisopropylamide

phthalimide

potassium phthalimide

benzoyl peroxide example of ROOR

LiAlH(Ot-Bu)3, lithium tri-t-butoxyaluminum hydride

$$O_2N$$
 $NO_2$ 
 $NH_2$ 

2,4-DNP or 2,4-DNPH 2,4-dinitrophenylhydrazine

$$N=C=N$$

DCC dicyclohexylcarbodiimide

AIBN azo-bis-isobutyronitrile

Sia₂BH diisoamy Iborane

TsCl or TosCl tosyl chloride

TsOH or TosOH p-toluenesulfonic acid

**NBS** N-bromosuccinimide

**MCPBA** m-chloroperbenzoic acid example of RCO₃H

$$\times$$

t-buty1 group

$$\bigcirc$$

THE tetrahydrofuran

acetone

$$\searrow^{O^-K^+}$$

KO'Bu potassium tertbutoxide

Me₂S, dimethyl sulfide

quinoline

AcOH acetic acid

OH

PYR

**DMF** dimethylformamide